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Noise-induced coherence in bistable systems with multiple time delays
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We study the correlation properties of noise-driven bistable systems with multiple time-delay feedbacks. For
small noisy perturbation and feedback magnitude, we derive the autocorrelation function and the power spec-
trum based on the two-state model with transition rates depending on the earlier states of the system. A
comparison between the single and double time delays reveals that the auto correlation functions exhibit
exponential decay with small undulation for the double time delays, in contrast with the remarkable oscillatory
behavior at small time lags for the single time delay.
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Noise-induced phenomena such as stochastic and coher- dx n o
ence resonance in nonlinear dynamical systems have recently p =x(t) - x(t)3+ > ex(t—T) + V2DE(). (1D
been under intensive analytical and numerical investigation t =1
[1-3]. The mechanism that underlies such resonancelike be- HereT; is thejth time delay and; is the strength of the
havior is the time scale matching between the statisticallyth feedback£(t) is a Gaussian white noise wit)=0 and
averaged escape time of the stochastic perturbation, whichy()g(t/)y=s(t-t’). Without loss of generality we assume
can be tuned by its intensity and some intrinsic time scale Ofat T, <T,<---<T,. In the absence of delays, a damped
the dynamical system or external periodic signals. Since thgarticle will spend most of its time near the stable states
conditions for occurrence of the stochastic and COherenCE)Cated atx=+1, and make occasional transition over the
resonance are simple and robust, it is not surprising that SBarrier in the center, under a moderate amount of random
and CR are observed and have applications in many natur@rcing. Thus, wherg; andD are small, the intrawell motion
and artificial systems, such as, the neural syqénoptical  can be neglected and E(.) can be approximated by a two-
system[5], and other physical systems. More recently, thestate system with its dynamical variab$¢t)=+1, corre-
study of the noise-induced resonance phenomena has besponding tox>0 andx< 0, respectively. We denote. to be
extended to nonlinear dynamical systems with delayed feedhe probabilities that the system occupies either state + at
backs[6-12. It is found that the interplay between the noise time t. Then, the governing equation fog is given by
and time delay can generate very complex dynamical behav-
iors that are relevant in many processes such as biophysi- dn, = dn = WL(t) = [WL(t) + W,(t)]n 2
ological controls[13], signal transmission in biological and dt dt B ) ' .
artificial neuronal networkgl4—14. A theoretic and numeri-
cal analysis on noise-induced dynamics in bistable syste
with time-delayed feedback loops have been carried o

based on a two-state model systghd]. In Ref. [9], Tsimring . we haveN=2" switching rates related to the stat&6-T,),
anq Plkpvsky 'have developed a theory of a prototyplca11$i§n_ We define byp(s,,s,, ....s) the switching rate
noise-driven bistable system with delayed feedback. Fog(t)ﬂ_s(t) given that then earlier states are in the stage

small noise and amplitude of the feedback, they derived thgs(t—T-) with 1=<i=n. Therefore, for our stochastic system
analytical formulas for the autocorrelation function and the : ' '

power spectrum that are in a very good agreement with direcvtvIth multiple delays the transition rates are given by

numerical simulations of the original Langevin equation. n
In this paper, we address the important issue of noise- Wt => > P(S1, Sy, - . ,Sy)Ng Ng, "N , (3)

driven dynamics with multiple delays. We will derive a gen- j=15=% '

eral theory for stochastic bistable system with multiple time-

delayed feedback loops within the framework of the two- n

state system approximation. It is well known that the W,(t) = > p=s,—Sy, ... =SSN N, N, (4)

behavior of multistable dynamical systems with memory de- j=1s=¢

pends on its past through some memory kernels formed by ) o )

multiple feedback loops with different delay times. Where the sum is oveN=2" combinations of{s;=+1,]
We consider the over-damped particle motion in a double=1,2, ... N} andns =ns (t=T,). To simplify the notation we

well quartic potential with an-tuple time-delayed feedback, introducea=p(s,s;, ... ,S,) to represent thih combination

which is described by with 1=311,(1-5)2"". The switching rates, can be deter-

mwhereWJ_r is the transition rate out of the + state. The dy-
amics of the two-state system is determined by the switch-
uﬁhg ratess— —s. Taking into account an-tuple time delays,
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mined from the original continuous bistable systein We
assume that whet; and D are small,a is given by the

Kramers escape ratg=(2m) 1\ U"(X)U" (xo)exp(—AU/D), N
wherex,, andx, are the positions of the minima and maxi- D = (= Pmutmat g, 9)
mum of the potential, respectively, ardJ is the potential L2..n =1 '

barrier. In the case of multiple time-delay feedbacks, the po-

sitions of the potential minima are approximated Ry =1 where

+¢, with the effective feedback coupling given by

=E?:1 s}ej. Heres; is determined by the sign aft)s(t-T)). -1 ]

For system(1) with small ¢ andD, we can write the modi- =1 o0 (I=jI=n
fied Kramers escape rates as

(10

b +3d are integers. Taking into account the weak delay feedbacks,
= \‘—e—<l+4é'>/4D_ (5) i.e., <1, we expand(2+3e) and then find
21
: P : ~(1+4¢)/4D n
The correlation function is defined as a~ e _ (1 +ZE Sj6j>- (11)
C(n=(s(NS(0) =(s(D) =2An (M) =1,  (6) v2m j=1

here we have made use of the normalization condition It can be verified that to the first order éthe coefficients in
+n_=1, and the assumption that the system is initially in thefront of the nonlinear terms of E8) are vanishing and the
state +, i.e.g(0)=1. On substitution of Eq6) into Eq.(2),  governing equation fo€(t) can be approximated by

we find

g = WO - WL - [Wa )+ WLmICh.  (7) Tar - PCOF le pC(t=T)). (12)

By inserting Eqs(3) and(4) into the governing equation for |y comparison with the governing equation for the single
the correlation function we find, after some algebra, the nontime delay, the additional terms with different delay times
linear equation for the correlation function may weaken or enhance the oscillatory nature of the autocor-
n relation function as shown in Ref9], depending on the
dﬁ_(t) = - pC(t) + > pCt—T)+ > P, Ct=T)C(t-T)) phasg ofC(.t—"I'j). Clearly if the effect pf multiple time de-
t =1 ij=1 lays is vanishing due to the cancellation among the delayed
feedbacks, the exponential decay will be a dominant feature

Pl -THCE-THCt =T + -+ of the correlation function.

n In the following we discuss the solution to this linear
+p1a. oIl CE-T)). (8)  equation under the normalization conditi&0)=1, and the
=1 symmetry requiremen€(-t)=C(t). In order to obtain the
The coefficients are found to be correlation functiorC(t), it is necessary to knov(t) at the
N time interval[0,T,]. Because of the symmetry, we need only
0= 2 a to computeC(t) on the time interval0,T,/2].

(i) On the interval0,T,), we use the ansatz,

n C(t) = Aoe‘koh\ + BO@o|t\' (13)
L= - 1M

By z( D, which satisfies the symmetry requireme@{-t)=C(t) by

definition, and the normalization gives riseAg+By=1. By

inserting this ansatz into E¢12) we find

=S v, -
- [E pie)‘oTi} [E pje_}‘OTj] =p5—A§ (14
i=1 =1

n
Pijk= gl (— 1)mil+mjl+mkla{ , and
n
pyeteTi
" Po= — (15
Piyiy i = E (= DMt Mt Mg, Po— Ao+ gl pje)\oTJ-
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Po—A

n
Po— Ao+ X p,etoi
=1

Bo (16)

If T,/2=<T,, then we can go to solve the linear differential
equation(12), with all the delay terms known. Otherwise we
have to find the solution to Eq12) using a similar ansatz on
each time intervals involved.

(i) Suppose thafl,_;<T,/2<T,, then on the interval
sets{[T;, T;;1]: 2<i=<k-2} we use the following ansatz:

C(t) = C(T)[Ae NI=T) + B ghillt=T)] (17)

On substitution of the above ansatz into EtR), we obtain

T

n n
=2 pjpk@i<Tj_Tk),
j=i k=i
from which the\; may be determined. For a givey, we
find the coefficientsA; and B; as follows:

n
Po+Ni— 2 pe ]

j=i

(18)

n
j=1
Ai = i n 1 (19)
Po=Ni = 2 pietiTi+ > T2
=1 j=i
i
Po—Ai— X pieMT
=1 .
B = i - I=<i=n).
Po— i = 2 piehTi+ 2 pyehiTi?h
=1 j=i
(20

(i) On the interval(Ty_,,T,) we defineAT=T,/2-T,.
We use the same ansatz for the correlation function that i
now defined only on the interval,_,, T,_.;+AT). We repeat
the step(ii) and finally obtainC(t) for 0<t<T,/2. Once
C(t-T,) is known we can calculat€(t) at allt>T,,

n
otV piC(t’ - Tydt' |.

=1

t
C(t) = e'pot[ C(Ty) + f
N

n

(21)

It is noted that whem=1 our results reduce to that obtained

in Ref.[9]. The solution structure depends now on the time-

delay distribution{T;} and the sign of the delay feedbacks
{€} as well.
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u@:f C(t)e“dt. (22
0
By substituting this definition into Eq12) we find
n
= C(0) ~iwl(w) == poL(w) + X p;e*T [ L(w)
=1
i-1
+2 Lk(w>e“wTk] : (23)
k=0

where L(o)=["Tkc(rexp-ior)dr. Remember that
C(0)=1 andTy=0, we obtain
n j-1
1+ pjeinjE e TkLy(w)
i=1 k=0
n

Po—iw= 2 peTi
=1

L(w)= (24

We now calculate the linear response of the delayed sys-
tem to a weak periodic signal. Following the similar argu-
ment of Ref.[15], we assume that the transition rat&y are
modulated with a frequenc{) according to the Arrhenius
rate law,

W, (1) = W, (t)e=?, (25)

where y(t) = uD lcog Qt+ ¢). Define o(t)=n,(t)-n_(t), and
the time evolution ofo(t) is determined by

d
d_(tT =W_e "V -w,e’ - (W,e"V + W.e")o.  (26)
Taking only the linear terms ikiV.(t), we find
n
(27

W.(t) = po+ > pjoit=T)).
j=1

Now suppose thatr=0,+uD toy and u<1, the linearized
equation foro reads

> pioa(t—T) — pecog Qt + ¢).

gdoy
=- t) - 28
dt Poor1 (1) < (28)
Using the ansatzr(t)=A&®*% we find
_ Po
A=- - (29
po+ 2 pie i +iQ
i=1
and the solution to Eq28) is given by
i(Q+¢)
o1() =~ Re—— , (30

po+ > pe T +iQ
=1

The power spectrum can be determined from the correla-

tion function by the following definition:

S(w)=2 RelL(w),

which is the periodic part at the frequenfyin the dichoto-
mic process under study. Thus, the linear response defined by
n=|A]2/D?, is given by
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time delay is sufficiently large, the exponential decay is re-
covered. Another interesting observation is that within the
approximation taken in the present work, the multiple time
delay do not generate multiple-periodic behavior of the cor-
relation function, though the peak-to-peak period in the cor-
relation function seems to increase slightly as the time delay
is increased. We also studied the linear response for those
two cases. For the large double delay timgsjecays in an
oscillatory manner, with deformed wave forms, but with the
same frequency as that of the single time delay. These results
strongly suggest that large multiple time delay may substan-
tially change the resonance properties of the bistable noisy
system, and deserves more detailed investigation.

In summary, we have studied the resonance behavior in a
noise-driven nonlinear bistable dynamical system with mul-
tiple time delays, in the regime of weak stochastic perturba-

FIG. 1. Comparison of the autocorrelation function in the two-tion and small amplitudes of delayed feedbacks. We have
state model with the single and double time delays. The noise inderived analytical formulas of autocorrelation function,

tensity isD=0.1, the feedback coupling strengths &re0.05 for
single time delay, and;=0.05 ande,=0.01 for double time delays,
respectively. The delay times aflg=250 andT,=0 (circles, the
single time delay, T,=490 (pluses, and T,=650 (crosses

1 S
2D?

n= 5. (31

n
2po+ 2>, pie i +iQ
=1

power spectrum, and linear response for the corresponding
two-state system. Our results may be relevant for a class of
stochastic systems with memory that is described by a dis-
tributed time delays, and may be extended to a more general
coupled multistable dynamical systems where the collective
property of the system depends on the past of their constitu-
ents through some memory kernels which represent the time-
delayed interaction configurations. It should be noted that the
analytical results presented in this work are valid only within

the approximations used in the derivation. Nevertheless, our

To explain the effects of multiple time delays, we com-yesyits may serve as a guide in many complex situations, at
pare the autocorrelation functions for the single and doublgast qualitatively.

time delays. From Fig. 1 we see that the oscillatory character
of the correlation function becomes less pronounced as the This research was supported in part by Grant Nos. 3110P-
second time delay is increased. It is expected that when the9607 and 2115-31930 from CONACyT.
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