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We study the correlation properties of noise-driven bistable systems with multiple time-delay feedbacks. For
small noisy perturbation and feedback magnitude, we derive the autocorrelation function and the power spec-
trum based on the two-state model with transition rates depending on the earlier states of the system. A
comparison between the single and double time delays reveals that the auto correlation functions exhibit
exponential decay with small undulation for the double time delays, in contrast with the remarkable oscillatory
behavior at small time lags for the single time delay.
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Noise-induced phenomena such as stochastic and coher-
ence resonance in nonlinear dynamical systems have recently
been under intensive analytical and numerical investigation
[1–3]. The mechanism that underlies such resonancelike be-
havior is the time scale matching between the statistically
averaged escape time of the stochastic perturbation, which
can be tuned by its intensity and some intrinsic time scale of
the dynamical system or external periodic signals. Since the
conditions for occurrence of the stochastic and coherence
resonance are simple and robust, it is not surprising that SR
and CR are observed and have applications in many natural
and artificial systems, such as, the neural system[4], optical
system[5], and other physical systems. More recently, the
study of the noise-induced resonance phenomena has been
extended to nonlinear dynamical systems with delayed feed-
backs[6–12]. It is found that the interplay between the noise
and time delay can generate very complex dynamical behav-
iors that are relevant in many processes such as biophysi-
ological controls[13], signal transmission in biological and
artificial neuronal networks[14–16]. A theoretic and numeri-
cal analysis on noise-induced dynamics in bistable systems
with time-delayed feedback loops have been carried out,
based on a two-state model system[17]. In Ref.[9], Tsimring
and Pikovsky have developed a theory of a prototypical
noise-driven bistable system with delayed feedback. For
small noise and amplitude of the feedback, they derived the
analytical formulas for the autocorrelation function and the
power spectrum that are in a very good agreement with direct
numerical simulations of the original Langevin equation.

In this paper, we address the important issue of noise-
driven dynamics with multiple delays. We will derive a gen-
eral theory for stochastic bistable system with multiple time-
delayed feedback loops within the framework of the two-
state system approximation. It is well known that the
behavior of multistable dynamical systems with memory de-
pends on its past through some memory kernels formed by
multiple feedback loops with different delay times.

We consider the over-damped particle motion in a double-
well quartic potential with an-tuple time-delayed feedback,
which is described by

dx

dt
= xstd − xstd3 + o

j=1

n

e jxst − Tjd + Î2Djstd. s1d

HereTj is the j th time delay ande j is the strength of the
j th feedback.jstd is a Gaussian white noise withkjl=0 and
kjstdjst8dl=dst− t8d. Without loss of generality we assume
that T1øT2ø ¯ øTn. In the absence of delays, a damped
particle will spend most of its time near the stable states
located atx= ±1, and make occasional transition over the
barrier in the center, under a moderate amount of random
forcing. Thus, whene j andD are small, the intrawell motion
can be neglected and Eq.(1) can be approximated by a two-
state system with its dynamical variablesstd= ±1, corre-
sponding tox.0 andx,0, respectively. We denoten± to be
the probabilities that the system occupies either state ± at
time t. Then, the governing equation forn± is given by

dn+

dt
= −

dn−

dt
= W−std − fW−std + W+stdgn+, s2d

whereW± is the transition rate out of the ± state. The dy-
namics of the two-state system is determined by the switch-
ing ratess→−s. Taking into account ann-tuple time delays,
we haveN=2n switching rates related to the statessst−Tid,
1ø i øn. We define bypss1,s2, . . . ,snd the switching rate
sstd→−sstd given that then earlier states are in the statesi

=sst−Tid with 1ø i øn. Therefore, for our stochastic system
with multiple delays the transition rates are given by

W−std = o
j=1

n

o
sj=±

pss1,s2, . . . ,sndns1
ns2

¯ nsn
, s3d

W+std = o
j=1

n

o
sj=±

ps− s1,− s2, . . . ,−sndns1
ns2

¯ nsn
, s4d

where the sum is overN=2n combinations ofhsj = ±1, j
=1,2, . . . ,nj andnsj

=nsj
st−Tjd. To simplify the notation we

introduceal =pss1,s2, . . . ,snd to represent thelth combination
with l =oi=1

n s1−si
ld2n−i. The switching ratesal can be deter-
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mined from the original continuous bistable system(1). We
assume that whenei and D are small,al is given by the
Kramers escape raterK=s2pd−1ÎU9sxmdU9sx0dexps−DU /Dd,
wherexm andx0 are the positions of the minima and maxi-
mum of the potential, respectively, andDU is the potential
barrier. In the case of multiple time-delay feedbacks, the po-
sitions of the potential minima are approximated byuxmu=1
+el, with the effective feedback coupling given byel

=o j=1
n sj

le j. Heresj is determined by the sign ofsstdsst−Tjd.
For system(1) with small ei andD, we can write the modi-
fied Kramers escape rates as

al =
Î2 + 3el

2p
e−s1+4eld/4D. s5d

The correlation function is defined as

Cstd = ksstdss0dl = ksstdl = 2kn+stdl − 1, s6d

here we have made use of the normalization conditionn+
+n−=1, and the assumption that the system is initially in the
state +, i.e.,ss0d=1. On substitution of Eq.(6) into Eq. (2),
we find

dCstd
dt

= W−std − W+std − fW+std + W−stdgCstd. s7d

By inserting Eqs.(3) and(4) into the governing equation for
the correlation function we find, after some algebra, the non-
linear equation for the correlation function

dCstd
dt

= − p0Cstd + o
j=1

n

pjCst − Tjd + o
i,j=1

pi,jCst − TidCst − Tjd

+ pi,j ,kCst − TidCst − TjdCst − Tkd + ¯

+ p1,2,. . .,np
j=1

n

Cst − Tjd. s8d

The coefficients are found to be

p0 = o
l=1

n

al ,

pj = o
l=1

n

s− 1dmjlal ,

pi,j = o
l=1

n

s− 1dmil+mjlal ,

pi,j ,k = o
l=1

n

s− 1dmil+mjl+mklal ,

¯

pj1j2¯ jk
= o

l=1

n

s− 1dmj1l+mj2l+¯+mjklal ,

¯

p1,2,. . .,n = o
l=1

N

s− 1dm1l+m2l+¯+mnlal , s9d

where

mjl = F l − 1

2n−j G s1 ø j , l ø nd s10d

are integers. Taking into account the weak delay feedbacks,
i.e., e j !1, we expandÎs2+3ed and then find

al <
e−s1+4eld/4D

Î2p
S1 +

3

4o
j=1

n

sje jD . s11d

It can be verified that to the first order ine, the coefficients in
front of the nonlinear terms of Eq.(8) are vanishing and the
governing equation forCstd can be approximated by

dCstd
dt

= − p0Cstd + o
j=1

n

pjCst − Tjd. s12d

In comparison with the governing equation for the single
time delay, the additional terms with different delay times
may weaken or enhance the oscillatory nature of the autocor-
relation function as shown in Ref.[9], depending on the
phase ofCst−Tjd. Clearly if the effect of multiple time de-
lays is vanishing due to the cancellation among the delayed
feedbacks, the exponential decay will be a dominant feature
of the correlation function.

In the following we discuss the solution to this linear
equation under the normalization conditionCs0d=1, and the
symmetry requirementCs−td=Cstd. In order to obtain the
correlation functionCstd, it is necessary to knowCstd at the
time intervalf0,Tng. Because of the symmetry, we need only
to computeCstd on the time intervalf0,Tn/2g.

(i) On the intervals0,T1d, we use the ansatz,

Cstd = A0e
−l0utu + B0e

l0utu, s13d

which satisfies the symmetry requirementCs−td=Cstd by
definition, and the normalization gives rise toA0+B0=1. By
inserting this ansatz into Eq.s12d we find

Fo
i=1

n

pie
l0TiGFo

j=1

n

pje
−l0TjG = p0

2 − l0
2 s14d

and

A0 =

o
j=1

n

pje
l0Tj

p0 − l0 + o
j=1

n

pje
l0Tj

, s15d
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B0 =
p0 − l

p0 − l0 + o
j=1

n

pje
l0Tj

. s16d

If Tn/2øT1, then we can go to solve the linear differential
equations12d, with all the delay terms known. Otherwise we
have to find the solution to Eq.s12d using a similar ansatz on
each time intervals involved.

(ii ) Suppose thatTk−1øTn/2øTk, then on the interval
setshfTi ,Ti+1g :2ø i øk−2j we use the following ansatz:

Cstd = CsTidfAie
−lisutu−Tid + Bie

lisutu−Tidg. s17d

On substitution of the above ansatz into Eq.s12d, we obtain

Fp0 − li − o
j=1

i

pje
liTjGFp0 + li − o

j=i

n

pje
−liTjG

= o
j=i

n

o
k=i

n

pjpke
lisTj−Tkd, s18d

from which theli may be determined. For a givenli, we
find the coefficientsAi andBi as follows:

Ai =

o
j=1

n

pje
lisTj−2Tid

p0 − li − o
j=1

i

pje
liTj + o

j=i

n

pje
lisTj−2Tid

, s19d

Bi =

p0 − li − o
j=1

i

pje
liTj

p0 − li − o
j=1

i

pje
liTj + o

j=i

n

pje
lisTj−2Tid

s1 ø i ø nd.

s20d

(iii ) On the intervalsTk−1,Tkd we defineDT=Tn/2−Tk.
We use the same ansatz for the correlation function that is
now defined only on the intervalsTk−1,Tk−1+DTd. We repeat
the step(ii ) and finally obtainCstd for 0, t,Tn/2. Once
Cst−Tnd is known we can calculateCstd at all t.Tn,

Cstd = e−p0tFCsTnd +E
Tn

t

ep0st8−tdo
j=1

n

pjCst8 − Tjddt8G .

s21d

It is noted that whenn=1 our results reduce to that obtained
in Ref. f9g. The solution structure depends now on the time-
delay distributionhTij and the sign of the delay feedbacks
heij as well.

The power spectrum can be determined from the correla-
tion function by the following definition:

Ssvd = 2 ReLsvd,

Lsvd =E
0

`

Cstdeivtdt. s22d

By substituting this definition into Eq.(12) we find

− Cs0d − ivLsvd = − p0Lsvd + o
j=1

n

pje
ivTjFLsvd

+ o
k=0

j−1

Lksvde−ivTkG , s23d

where Lksvd=e0
Tk+1−Tk cstdexps−ivtddt. Remember that

Cs0d=1 andT0=0, we obtain

Lsvd =

1 + o
j=1

n

pje
ivTjo

k=0

j−1

e−ivTkLksvd

p0 − iv − o
j=1

n

pje
ivTj

. s24d

We now calculate the linear response of the delayed sys-
tem to a weak periodic signal. Following the similar argu-
ment of Ref.[15], we assume that the transition rates(5) are
modulated with a frequencyV according to the Arrhenius
rate law,

W±8std = W±stde±gstd, s25d

wheregstd=mD−1cossVt+fd. Definesstd=n+std−n−std, and
the time evolution ofsstd is determined by

ds

dt
= W−e−gstd − W+egstd − sW+egstd + W−e−gstdds. s26d

Taking only the linear terms inW±std, we find

W±std = p0 ± o
j=1

n

pjsst − Tjd. s27d

Now suppose thats=s0+mD−1s1 andm!1, the linearized
equation fors reads

ds1

dt
= − p0s1std − o

i=1

n

pis1st − Tid − p0cossVt + fd. s28d

Using the ansatzs1std=AeisVt+fd, we find

A = −
p0

p0 + o
j=1

n

pje
−iVTj + iV

s29d

and the solution to Eq.(28) is given by

s1std = − Re
p0e

isV+fd

p0 + o
j=1

n

pje
−iVTj + iV

, s30d

which is the periodic part at the frequencyV in the dichoto-
mic process under study. Thus, the linear response defined by
h= uAu2/D2, is given by
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h =
1

2D2

p0
2

U2p0 + 2o
j=1

n

pje
−iVTj + iVU2 . s31d

To explain the effects of multiple time delays, we com-
pare the autocorrelation functions for the single and double
time delays. From Fig. 1 we see that the oscillatory character
of the correlation function becomes less pronounced as the
second time delay is increased. It is expected that when the

time delay is sufficiently large, the exponential decay is re-
covered. Another interesting observation is that within the
approximation taken in the present work, the multiple time
delay do not generate multiple-periodic behavior of the cor-
relation function, though the peak-to-peak period in the cor-
relation function seems to increase slightly as the time delay
is increased. We also studied the linear response for those
two cases. For the large double delay times,h decays in an
oscillatory manner, with deformed wave forms, but with the
same frequency as that of the single time delay. These results
strongly suggest that large multiple time delay may substan-
tially change the resonance properties of the bistable noisy
system, and deserves more detailed investigation.

In summary, we have studied the resonance behavior in a
noise-driven nonlinear bistable dynamical system with mul-
tiple time delays, in the regime of weak stochastic perturba-
tion and small amplitudes of delayed feedbacks. We have
derived analytical formulas of autocorrelation function,
power spectrum, and linear response for the corresponding
two-state system. Our results may be relevant for a class of
stochastic systems with memory that is described by a dis-
tributed time delays, and may be extended to a more general
coupled multistable dynamical systems where the collective
property of the system depends on the past of their constitu-
ents through some memory kernels which represent the time-
delayed interaction configurations. It should be noted that the
analytical results presented in this work are valid only within
the approximations used in the derivation. Nevertheless, our
results may serve as a guide in many complex situations, at
least qualitatively.
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FIG. 1. Comparison of the autocorrelation function in the two-
state model with the single and double time delays. The noise in-
tensity isD=0.1, the feedback coupling strengths aree=0.05 for
single time delay, ande1=0.05 ande2=0.01 for double time delays,
respectively. The delay times areT1=250 andT2=0 (circles, the
single time delay), T2=490 (pluses), andT2=650 (crosses).
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